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The problem is considered of the res tora t ion  of the coefficients of the quasi l inear ,  one- 
dimensional  equation of thermal  conductivity over  a given tempera ture  field for  "pure" and 
"composite" ma te r i a l s .  The s t rong dependence of the solution on the e r r o r s  in the specif ica-  
tion of the initial t empera ture  field is i l lustrated by a par t icu lar  example.  Algori thms are 
given for  the numer ica l  solution of the problem.  

1. Formulat ion of the P rob lem.  We shall consider  the boundary problem for  the thermal  conduc- 
tivity equation 

(1) 
(~, T) E G ~ (G0, ~1) X (TO, T1), 

u (~, ~o) = u ~ (~) ,  u (G0, T) = u0 (T),  u (~1, +"0 = ui ( %  

The solution u (~, z) reaches  the upper and lower bounds at the boundary G: 

u i = inf u (~, T) == inf {u ~ (~), u 0 (T), ul(T)}, 

u+ = sup u (~, T) = sup {u ~ (~), Uo (T), U~ (T)}. 
(L "c)c~ (L -c)c~ 

Denoting by I t the interval (ul, Us), we shall assume that the coefficients c and X belong to the c lasses  
C (I-~) and C 1 (~) respect ively .  We shall suppose also that the functions occur r ing  in the boundary conditions 
(1), sa t isfy  the conditions of compatibil i ty of f i r s t  o rde r  [1]: 

U (~, "I:) E C2'1 (G): u (~, %o) = u o (~), 
(2) 

v (Go, ~:) = uo ('0, v (~  ('0 = u~ (+) ,  P [v ] i~=o+  = 0 .  

Within these assumptions there exists a lso a unique solution of the boundary problem (1) for every  pair  
(c, X) and, consequently, the functional mapping K of the set  M of pairs  (c, X) can be introduced into the 
class  C 2'1 (G): 

K [(c, ~)1 = u, (3) 

uEc  2,' (~), (e, ~)EM-----{(e, ~+)!c, ~ > 0 ,  (c, ~)EC(~)  • C1(70}. 

In view of what has been stated, we shall consider  the following r eve r se  problem.  For  a given function 
vE C 2'1 (G), sat isfying the boundary conditions (1), it is n e c e s s a r y  to find a pair  (c, ~) E M,  making equation 
(1) identical, i . e . , to  solve relative to (c, X) the functional equation K[(c,  ~)] = v. In the general  case,  i,e., 
for  the a rb i t r a ry  function vE C 2'1 (G), the solution of (c, X) E M in the stated sense does not exist ,  but when 
it exists then, general ly  speaking, it is not unique. We note at  once the obvious nonuniqueness of the solu- 
tion (c, ~): 
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K [(c, ~)] = K [~c, ~X], ya  > 0. 

Nonuniqueness of this type cannot be removed by any choice whatever  of vE C 2,t (G). 
two solutions (c, ~) and (6, ~) of equation (3) which a re  connected by the relat ion 

Therefore ,  the 

Z= ac, Z = a~, a = const > 0, (4) 

we shall assume to be coincident.  For  those cases  when the solution exists of the formulated reverse  
problem, the class  of t empera ture  fields vE C 2,1 (~), for  which the solution is unique with an accuracy  up 
to the t ransformat ion  of Eq. (4), can be descr ibed completely.  In [2], the solution (c, X) of Eq. (3) is non- 
unique when, and only when, the field u (~, 7) has the form u = u (z), where the function z (~, =r) is de ter -  
mined by one of the relat ions:  

z = ao~ § [3o~ § ~o or  z = ~ + [3~ + %. (5) 
v ~ a o  ( ~ 1  - -  ~) 

Here a0, rio, T0, al a re  a r b i t r a r y  constants .  

Without laying claim to whatever  the general i ty,  we introduce the following terminology.  We shall 
say that to every  pair  (c, X) ~ M there corresponds  a cer ta in  pure mate r ia l  and vice versa ,  pure mater ia ls  
are  only those whose proper t ies  are  descr ibed  by a cer ta in  pair  (c, k)E M. F r o m  the physical  point of 
view, a pure mate r ia l  is one for which the proper t ies  c and k a re  functions of a state (in the case of the 
thermal  conductivity process  -- of a state of temperature)  and are  independent of the path by which this 
state iS a c h i e v e d .  For  pure mate r ia l s ,  the solution of Eq.  (3) for a given field v(~, T)E C 2,~ (9) is equiv- 
alent  to finding the zero  minima of the functional 

Jl = ,  c(v) O~ OB 6~ J I 
q 

We shah  understand by composite ma te r i a l s ,  those mater ia l s  whose proper t ies  are  not functions of a 
state.  The main reasons  for  composite mater ia l s  not having such thermophysica l  charac te r i s t i c s  as 
specific heat and thermal  conductivity, a re  i r revers ib le  changes of mic ros t ruc tu re  of the composi te  mate -  
r ia l  or  of some of its components in ext reme conditions of external  thermal  influences. Two methods for  
descr ibing the proper t ies  of composite mater ia l s  are  possible .  

A. Assuming some or  other  model for the mic ros t ruc tu re  of the mater ia l  and using the r ep resen ta -  
tions of s ta t is t ical  physics ,  the problem can be reduced to the solution of the kinetic equations.  This ap- 
proach,  with a successful  choice of model,  should give the mos t  complete and accurate  descr ipt ion of the 
medium being investigated. However,  it is well-known that there are  enormous computational difficulties 
in solving the kinetic equations.  There  is also the drawback that the choice of model is not a simple mat te r  
and, for  different types of composite mate r ia l s ,  a special  physical  considerat ion is neces sa ry .  The ade- 
quacy i tself  of the model for  actual composite mater ia l s  can confirm only a compar ison  between the calcu-  

lated tempera ture  fields and those observed experimental ly .  

IX jib 
-a/s -~Io -~05 o qe5 r e, 

Fig.  1. Dependence of the funda- 
mentals 55 and 52 o n e :  1) N~• 
=6 • 10; 2) 21 x 21; 3) 51 • 21. 

]3. Phenomenological  approach.  Assuming that the t empera -  
ture distr ibution in composite mater ia l s  obeys the thermal  conduc- 
tivity equation, the coefficients of the equation in the tempera ture  
function are  chosen in such a way that the solution of the equation 
differs minimally f rom the tempera ture  field observed exper imen-  
tally.  Physica l ly ,  this approach is justified in that the temperature  
is an energy,  i . e . ,  an integral ,  cha rac te r i s t i c .  It is c lear  f rom 
the mos t  general  considerat ions that a change of temperature  must  
be descr ibed  by an equation of the evolutionary type. The thermal  
conductivity equation, the coefficients of which are  functionals of 
the tempera ture  field, can serve  as a special  example of this equa- 
tion. One of the variants of this phenomenotogical approach will 
be considered here .  

Suppose that the tempera ture  field v(~, 7) ~ C (G) is given. 
The solution of the r eve r se  problem in the case of a composite 
mater ia l ,  we shall call the pai r  (c*, ~*) E M, providing the mini-  
mum to the functional 

J~ ~ p~ (v', u) (7) 
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with the conditions 

a. a (~ a ~ _ ) = o  ' (t, ~)c~, P [u] ~- c & at 

u (~, ~ o ) - v  (~, ~o), u (to, ~ ) =  v(to, % 
u (~1, ~)  ~ v (~1, ~)- 

That is, the condition determining the solution (c*, X*) is wri t ten as 

~ (c*, ~*) = p~ (v, K (M)). 

The met r ic  p (v, u) in Eq.  (7) is defined by one of the equivalent norms  of the space C (G). 

2. Methods of Solution. In general iz ing the problem, we shall not assume in future that the domain 
G is rectangular :  

-= {(L "01 ~~ (~0, ~1), tE (t0, t,_ (~))}, 

here ~1 (T) is a given continuously-differentiable function. Thus, the physical  possibi l i ty of the removal  
(deposition) of mass  f rom the surface of the sample is taken into account.  We shall consider  separate ly  
the cases  of pure mater ia l s  and composite ma te r i a l s .  

Fo r  pure mate r ia l s ,  the solution (c, X) is wri t ten in the form of cubic sptines [3] CD (u) and XD (u), 
defined by the lattice D 

The cubic spline [31 c D on the intercept  [Uk_l, Uk] is given by the formula 

CO (/~) C(1) k , (2) ~(1) k . C(2) ~ = [ l  T ce [~ + '-,~-lg~ -r- .~-i gz, k = 1, 2 . . . .  N ,  

~f = (U - -  U~_I) 2 [2 (U h - -  U) - ~  h~] f~ = ( u - -  uk_l )~(u- -  u~) . h~ ' h~ ' 

g~ = (uh - -  u)~[2 (u - -  u ~ _ , )  + hl~] g~ = (u~ - -  u)~(u - -  uh_~) . 

h~ ' h~ ' 

where 

d c  

The spline A D (u) is wri t ten s imi lar ly :  

x,~(.) = z~" f'~ -_ ~.~ f~ + z~,  g~: + ~4~, e~, k = 1, 2 . . . .  , N, 

with the same ~unct io~ ls f~  and gi~, and with the mean~g of the coefficients ,,~). 
The minimized functional (6) can be represen ted  in the fo rm of a sum: 

N N 

,,2 __.., ,.re ovo  C i -= .r.;., 
w h e r e  G k is a Lebesque set  of the function v(~, T): 

Gh-- {(t, ~)l (t, ~) E6; u~_~ <~ v (t, ~) -< uk}. 

We introduce the following notations: 

N 

t c~ k), i : 4a -}- k, cz = O, 1, 2 . . . . .  IV, 

xi  = [ X~ k), i - -  4~z -+- k - -  2, k = t ,  2; 
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av m~-, i=-I, 2, 

_._~( ( o.~ ~ ' ~,i-2~7-j, ] =  3, 4, 
h ~, ] ! 

= ] av . 
r162 i - -  5, 6, 

I 
I a /  ~ O r \  

"''~ dc . 
Gp 

The in tegra l  of j~ in these notations a s s u m e s  the form:  
$ 

J; = .I,l" 
6t~ / = 1  

The condition for  min imum of the function J~ of the va r i ab les  {x k} is r e p r e s e n t e d  by a l inear  s y s t e m  of 
a lgebra ic  equations {grad J~ = 0): 

8 

~,al~'ixj=0, k = l ,  2, 3, 4, 
}=1 

12 

~ ~'ix = 0 ,  p = l  2, N - - l ,  k = 5 ,  6, 7, 8, ap /'-}-4( p -  1 ) , �9 �9 "~ 
] = 1  

y.a~-'~ = o ,  k = s ,  6, 7, s. 1-}-4(N--1) 
1=I  

the coefficients  a k , j  a r e  de te rmined  by the equations: 
1 

[H~' J', l < ] - <  4, 
) i t / k ,  J I ~-k--4,  j - - 4  ~ 1 -  : k, ] ).Lip -7  .~lp+l , O ~ J  ~. 8 ,  ap 
i 

~--4, i--4 }Hp+, , 9 < I ~ 12. 

a N ~ 

(8) 

Thus,  the p rocedure  for  finding the coefficients  de te rmin ing  the spl ines  c D (u) and X D (u) has been 
reduced to the evaluat ion of 72N double in tegra ls  Hi, k (Hi, k = H k, i) and the solution of the l inear  equation 

P P P 
(8). Both these opera t ions  a r e  c a r r i e d  out eas i ly  numer ica l ly  by s tandard  methods .  As the se t  of spl ines 
on I1 is eve rywhere  dense in C (I0 and in C 1 (I1), then when N ~ ~ the spl ines  c D (u) and h D (u) tend to the 
solution of the p rob lem of min imiza t ion  of the functional (6). 

Le t  us now cons ider  the case  of a composi te  m a t e r i a l .  In the formula t ion  of the p rob lem,  the so lu-  
tion (c*, h*) min imizes  the functional 

J 2: SS/u-v) d  (9) 
G 

with the i s o p e r i m e t r i c  conditions: 

G 

We note that,  in con t r a s t  f r o m  the case  cons idered  of pure m a t e r i a l s ,  the function v(~,  T) is a s sumed  to 
belong only to the c l a s s  C (G). The solution of the p rob l em,  of Eq.  (9) and (10), can be cons t ruc ted  by the 
methods of unconditional min imiza t ion  [4]. We introduce the new functional 

J (6) 62 2 = 2 ~- 6J3, 

he re ,  5 is a posi t ive s c a l a r  p a r a m e t e r .  

Suppose that  {6n} is an inc reas ing  success ion  of posi t ive n u m b e r s ,  5 n -2 + oo. We denote by {Cn, 
)in, Un) the t r ip le t  of functions providing the min imum to the functional J (6) when 5 = 5n [(Cn, hn) E M, 
unE C 2,1 (G)]. The solution of the p rob l em of Eq.  (9) and (10) a t  an a r b i t r a r y  e x t r e m u m  is cons t ruc ted  as 
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0,6 

I 

I 

F i g .  2. 

*..qto ,~f~ o - -  t ~. 

op o,e ,,z y t,e u 

F u n c t i o n  X(u) f o r  d i f f e r e n t  va lue s  

of  ~: 1-3)  s a m e  as  in F i g .  1.  

the l i m i t  of {c  n, X n,  Un} when n ~ ~ [41. The  func t iona l  
J n  = J (Sn) is  m i n i m i z e d  by  the m e t h o d  of q u i c k e s t  d e s c e n t  
in the s p a c e  

P-7 -d "  ' (G) >~, C ( 0  x C~(O. 

We note  s o m e  s p e c i a l  f e a t u r e s  of  th is  p r o c e d u r e .  Suppose  
tha t  {c ~, X 1, u I } is  the f i r s t  a p p r o x i m a t i o n  of the e x t r e m a l  
I n .  V a r i a t i o n  of I n r e l a t i v e  to the func t ion  u a t  the po in t  
{e 1 , X*, u 1 } is  w r i t t e n  in the s t a n d a r d  way ,  by de f in ing  the 
g r a d i e n t  of the  func t iona l  J n  in the s p a c e  C 2, l (~):  

6J,~ = 2 z, SudG q- 28.. z.. - -  - ~  (P,)~) dF6u, 

w h e r e  

z I = z - -  6,~ (P,c*) + ~ - (  2P ,  - ~  - -  6~ O ~ ,  t . . , ,  

z 2 = 2P, 0~* 0~ 0 (P,)v*) 0~ & [ a~ or o~ -g( + P,6 OF' z = u ~ -  v + 6~P~ oo~ o ~ -  t 
o,  

D e s c e n t  in the d i r e c t i o n  of  the  g r a d i e n t  5u f o r  f i x e d  func t ions  c I (u) and  X I (u) is  a c c o m p l i s h e d  by a s t e p p e d  
change  of the s c a l a r  p a r a m e t e r  h .  As  c o n c e r n s  the m i n i m i z a t i o n  of  I n in the s p a c e  C (~) x d (~) w i l t /  the 
f ixed  func t ion  u ~, th i s  p r o c e d u r e  c o i n c i d e s  in a c c u r a c y  wi th  tha t  d e s c r i b e d  above  fo r  the e a s e  of pu re  m a t e -  
r i a l s .  The  d i f f e r e n c e  c o n s i s t s  in tha t  the  r o l e  of  v is  p l a y e d  h e r e  by  u I and  the m i n i m u m ,  g e n e r a l l y  s p e a k -  
ing,  w i l l  no t  be z e r o  ( i t  w i l l t e n d t o  z e r o  when n ~ co). 

3. E r r o r s  in the S p e c i f i c a t i o n  of the T e m p e r a t u r e  F i e l d s .  L e t  us c o n s i d e r  the fo l lowing  s p e c i f i c  
p r o b l e m , ,  n a m e l y ,  tha t  i t  is  n e c e s s a r y  to f ind the t h e r m a l  c o n d u c t i v i t y  of a m a t e r i a l  X(u) f o r  a s p e c i f i e d  
t e m p e r a t u r e  f i e l d  

u(~, ~) = ~ + ~ ( 1  +s~),  (L 9E(0, 1) • (0, 1). (11) 

The s p e c i f i c  h e a t  c is  a s s u m e d  to be c o n s t a n t  (c - 1).  The p r o b l e m  has  an  obvious  s o l u t i o n  in the c l a s s  of 
pu re  m a t e r i a l s  when s = 0: X -~ 0 . 5 .  In the s e a s e  of the de f in i t i ons  i n t r o d u c e d  above ,  th is  m e a n s  tha t  the 
t e m p e r a t u r e  f i e ld  u (~, z) when s = 0 be longs  to a f o r m  k(M) of the s e t  M: 

u(~, ~, e)l~=o = K[(1; 0.5)1. 

By the m e t h o d  of r e d u c t i o n  to the s y s t e m  of l i n e a r  equa t ions  (8), the func t ion  X(u) has  been  found in the 
f o r m  of a cub ic  sp l ine  f o r  c e r t a i n  v a l u e s  of the p a r a m e t e r  s in the n e i g h b o r h o o d  of z e r o .  S i m u l t a n e o u s l y ,  
the va lue  of the func t i ona l s  of the m e a n - s q u a r e  and h o m o g e n e o u s  c o n v e r g e n c e  has  been  c a l c u l a t e d :  

81 = max IP [u]!, &, (i" i'P'~[u] 4 
1/2  

. = a G ) .  

The r e s u l t s  of  the n u m e r i c a l  s o l u t i o n  a r e  shown in F i g s .  1 and 2. In a d d i t i o n  to the p a r a m e t e r  s ,  
the n u m b e r  of po in t s  N} x Nr  was  a l s o  v a r i e d  in the s q u a r e  (0.1)  • (0 .1 ) ,  in which  the s p e c i f i e d  f i e l d  u ( } ,  
T) is  a s s u m e d  to b e .  The  c a l c u l a t i o n s  w e r e  c a r r i e d  out  f o r  t h r e e  v a l u e s  of  N} • NT: N} • N T = 6 • 10, 
21 x 21 and  51 x 21. A l l  the d e r i v a t i v e s  of u (~, r ) ,  p a r t i c i p a t i n g  in P [u], w e r e  c a l c u l a t e d  e x a c t l y  by d i f -  
f e r e n t i a t i o n s  of E q .  (11). The  i n t e g r a l s  H i , k ,  o c c u r r i n g  in the c o e f f i c i e n t s  of s y s t e m  (8), w e r e  r e p l a c e d  
by i n t e g r a l  s u m s  of the type:  P 

H) ~ h" ~(~o~, T,~) h e' ~(!.. ~ )  AG (.~, ~), 

(~m, %) CGv, 4AG (m, n) = (~m+, - -  '~-~m-t)(%+*' - -  %-')'- (12) 
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Figure  1 shows the functions 61 (e) and 52 (e) for  different  numbers  of N~ x N T. The solutions of k(u) for  e 
= i 0.1 and + 0.15 and three  values of N~ x N T a re  plotted in the f o r m  of graphs  in Fig .  2. The nonvan- 
ishing of the functional 51 (e) and 52 (e) shows that  when e ~ 0, the t e m p e r a t u r e  field u (~, T) cannot be ob- 
s e rved  in pure  m a t e r i a l s  with c = const  (this l imi ta t ion is impor tant ) .  The behavior  of k(u, e) in t e r m s  of 
the in tegra l  sums (12) is found to be a s t rong  function of the number  of points at  which the field u (~, T) is 
specif ied and its de r iva t ives .  This  example  shows that ext rapola t ion  of the the rmophys ica l  p rope r t i e s  in a 
c lass  of pure m a t e r i a l s  ]minimizat ion of the functional (6)], even with sma l l  per turba t ions  of the f ield v (~, 
T), iS v e r y  inde te rmina te .  Bear ing  in mind that the expe r imen ta l  m e a s u r e m e n t s  a lways a re  c h a r a c t e r i z e d  
by some or other  e r r o r s  and the der iva t ives  du/dT, du/d~ and d2u/d~ 2 can be obtained only by numer i ca l  
different ia t ion,  introducing additional e r r o r s  in the speci f ica t ion of the s ta r t ing  data for  solving the r e v e r s e  
p rob lem,  the conclusion can be drawn that the appl icat ion of the method of the solutions to a c lass  of pure 
m a t e r i a l s  [minimizat ion of the functional (6)] in p rac t i ca l  p rob lems  mus t  r evea l  cons iderable  diff icul t ies .  
On the other  hand, if the f ield v(~,  T) 5K(M),  then min imiza t ion  of Eq.  (9) with the condition (10) leads to 
the solution (c, k), providing a ze ro  value to both functionals ,  i . e . ,  the solution to a c lass  of pure  m a t e -  
r i a i s .  

N O T A T I O N  

~, space  coordinate;  T, t ime coordinate;  u(~,  T), t e m p e r a t u r e  at  the point (~, T); C, speci f ic  heat;  
h, t h e r m a l  conductivity as a function of t empe ra tu r e ;  C (I1), space of the continuous functions on I1; Cl(It), 
space  of the continuous functions on I1, together  with the f i r s t  der iva t ive ;  C 2'1 (~), space  of functions u (~, 
7), continuous on G, together  with second o rde r  de r iva t ives  in ~ and f i r s t  o r d e r  der iva t ives  in T; e, s c a l a r  
p a r a m e t e r ,  defining the m e a s u r e  of pe r tu rba t ion  of the exact  solution of u (~, T) E K (M). 
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