COMPUTATIONAL— EXPERIMENTAL DETERMINATION
OF THE THERMOPHYSICAL PROPERTIES
OF MATERIALS

V. V. Frolov UDC 536.2

The problem is considered of the restoration of the coefficients of the quasilinear, one-
dimensional equation of thermal conductivity over a given temperature field for "pure" and
"composite" materials. The strong dependence of the solution on the errors in the specifica-
tion of the initial temperature field is illustrated by a particular example. Algorithms are
given for the numerical solution of the problem.

1. Formulation of the Problem. We shall consider the boundary problem for the thermal conduc-
tivity equation
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The solution u (£, 7) reaches the upper and lower bounds at the boundary G:
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Denoting by I; the interval (uj, ug), we shall assume that the coefficients ¢ and A belong to the classes
C () and c! (1) respectively. We shall suppose also that the functions occurring in the boundary conditions
(1), satisfy the conditions of compatibility of first order [1]:
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Within these assumptions there exists also a unique solution of the boundary problem (1) for every pair
(c, A) and, consequently, the functional mapping K of the set M of pairs (¢, A) can be introduced into the
class C%'! (G):

K. [(C’ ;“)] =Uu, (3)
weC®' (), (¢, WeM={(c, Me, A>0, (¢, WEC (T x C* (1)}

In view of what has been stated, we shall consider the following reverse problem. For a given function
veCt1(G), satisfying the boundary conditions (1), it is necessary to find a pair (¢, A) € M, making equation
(1) identical, i.e.,to solve relative to (c, M) the functional equation K[(c, A)] =v. In the géneral case, i.€.,
for the arbitrary function v€ €% (G), the solution of (c, N €M in the stated sense does not exist, but when
it exists then, generally speaking, it is not unique. We note at once the obvious nonuniqueness of the solu-
tion (¢, A):

N. E. Zhukovskii Central Aerohydrodynamic Institute, Moscow. Translated from Inzhenerno-
Fizicheskii Zhurnal, Vol. 27, No. 4, pp. 720-727, October, 1974. Original article submitted January 26,
1973.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or fransmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

1281



K, M1 = K [oc, ah], yo>0.

Nonuniqueness of this type cannot be removed by any choice whatever of v€ C%*! (G). Therefore, the
two solutions (¢, A) and (¢, A) of equation (3) which are connected by the relation

C=oac, h=ah o=const>0, (&)

we shall assume to be coincident. For those cases when the solution exists of the formulated reverse
problem, the class of temperature fields vé C2+! (G), for which the solution is unique with an accuracy up
to the transformation of Eq. (4), can be described completely. In [2], the solution (¢, A) of Eq. (3) is non-
unique when, and only when, the field u(¢, 7) has the form u = u(z), where the function z (¢, 1) is deter-
mined by one of the relations:

)

V oy (00 —17)

2= 0§ - BoT -+, O 2= + Vo (5)

Here oy, By, vy, oy are arbitrary constants.

Without laying claim to whatever the generality, we introduce the following terminology. We shall
say that to every pair (¢, A) € M there corresponds a certain pure material and vice versa, pure materials
are only those whose properties are described by a certain pair (¢, A)€ M. From the physical point of
view, a pure material is one for which the properties ¢ and A are functions of a state (in the case of the
thermal conductivity process — of a state of temperature) and are independent of the path by which this
state is achieved. TFor pure materials, the solution of Eq. (3) for a given field v(¢, 7)€ ¢t (G) is equiv-
alent to finding the zero minima of the functional

NI RO
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G
We shall understand by composite materials, those materials whose properties are not functions of a
state. The main reasons for composite materials not having such thermophysical characteristics as
specific heat and thermal conductivity, are irreversible changes of microstructure of the composite mate-
rial or of some of its components in extreme conditions of external thermal influences. Two methods for
describing the properties of composite materials are possible,

A. Asguming some or other model for the microstructure of the material and using the representa-
tions of statistical physics, the problem can be reduced to the solution of the kinetic equations. This ap-
proach, with a successful choice of model, should give the most complete and accurate description of the
medium being investigated. However, it is well-known that there are enormous computational difficulties
in solving the kinetic equations, There is also the drawback that the choice of model is not a simple matter
and, for different types of composite materials, a special physical consideration is necessary. The ade-
guacy itself of the model for actual composite materials can confirm only a comparison between the caleu-

lated temperature fields and those observed experimentally.

) B. Phenomenological approach. Assuming that the tempera~-
l /) ture distribution in composite materials obeys the thermal conduc-
tivity equation, the coefficients of the equation in the temperature
function are chosen in such a way that the solution of the equation
: :2 > / differs minimally from the temperature field observed experimen-
/ tally. Physically, this approach is justified in that the temperature
A " is an energy, i.e., an integral, characteristic. It is clear from
& the most general considerations that a change of temperature must
% 4 be described by an equation of the evolutionary type. The thermal
\ conductivity equation, the coefficients of which are functionals of
N

-

at2.

o — f

W7 7 the temperature field, can serve as a special example of this equa~
tion. One of the variants of this phenomenological approach will
be considered here.

Suppose that the temperature field v(§, 7)€C (G) is given.
g5 gw a5 0 g5 G0 © The solution of the reverse problem in the case of a composite
material, we shall call the pair (¢*, A*)€ M, providing the mini-
mum to the functional

f‘ig. 1. Dependence bf the funda-
mentals 6, and 6, on €: 1) Ng X Ny N -
=6 x10; 2) 21 x 21; 3) 51 x 21. S =00, ) (0
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with the conditions
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That is, the condition determining the solution (c*, A*) is written as
JE(c*, M) = (v, K(M)).
The metric p (v, u) in Eq. (7) is defined by one of the equivalent norms of the space C (G).

2. Methods of Solution. In generalizing the problem, we shall not assume in future that the domain
G is rectangular:

G={(& Nty ) EEp &N

here £, (7) is a given continuously-differentiable function. Thus, the physical possibility of the removal
(deposition) of mass from the surface of the sample is taken into account. We shall consider separately
the cases of pure materials and composite materials.

For pure materials, the solution (¢, A) is written in the form of cubic splines [3] ¢p (u) and Ap(w),
defined by the lattice D

iUy <ty Uy < eee e <uy =l

The cubic spline [3] cp on the intercept [u,_;, wy] is given by the formula

o) =t o i+ eigh +oPigh k=1, 2, .., N,
where
p (w—uy )" [2(u—u) + Bl o (—u ) —uy)
fl = 3 f2 = g ’
hk hk
— )2 — A — ) u—u
glic:(uh u)*{2 (u . Up_1) & Ml ) géc: (uy — ) (h2 ht) .
b k
A = e (), o =2 s = sy — .
du
The spline Ap(u) is written similarly:
M) = M =a M gl A g k=1, 2, . LN,

with the same functionals f K and g s, and with the meaning of the coefficients k( D

The minimized functional (6) can be represented in the form of a sum:

e \?‘j [ : 9_[, 00 Jde ” FlG, = V 2
T

ot \" %

where Gy is a Lebesque set of the function v({, 1):
Gy ={(& |E VEG u, LvE 1)<y}

We introduce the following notations:

B =4tk a=0 1,2 ... N,

Tl gt k2 k=1, 9
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The integral of j2k in these notations assumes the form:
8
2 " 12
Ie= YS [ *eaen ]] dG;.
Gy =t
The condition for minimum of the function J} of the variables {xk} is represented by a linear system of
algebraic equations (grad J} = 0):

g
¥ =0, k=1, 23,4,
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the coefficients al.f’j are determined by the equations:

a ' =Hp,
Hy ', 1<) 4,

ay = Hy '+ Higt 7Y, 5<i<8,
Hygr 7, 9 <12,
oyl = Hy .

Thus, the procedure for finding the coefficients determining the splines cp (u) and Ap (u) has been
reduced to the evaluation of 72N double integrals H;,k (HIiJ’k = Hg: Iy and the solution of the linear equation

(8). Both these operations are c_arried out easily numerically by standard methods. As the set of splines
on I is everywhere dense in C(L)) and in C!(I,), then when N — « the splines cp (u) and Ap (u) tend to the
solution of the problem of minimization of the functional (6).

Let us now consider the case of a composite material. In the formulation of the problem, the solu-
tion (c*, A*¥) minimizes the functional

2= |V @ —vpaa (9)
G
with the isoperimetric conditions:
ou o [, du\7?
Ji= — ———{A— | dG =0, (c, L)eM.
=y )] o 7 o
[¢]

We note that, in contrast from the case considered of pure materials, the function v(£, 7) is assumed to
belong only to the class C(G). The solution of the problem, of Eq. (9) and (10), can be constructed by the
methods of unconditional minimization {4]. We introduce the new functional

J(8) = 8 + 8J3,
here, 6 is a positive scalar parameter.

Suppose that {6n} is an increasing succession of positive numbers, o, 7 + o, We denote by {cn,
An» Upt the triplet of functions providing the minimum to the functional J (8) when & = 6y [(cp, Ap) €M,
un € C%:1 (G)]. The solution of the problem of Eq. (9) and (10) at an arbitrary extremum is constructed as
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the limit of {cy, Ap, up) Whenn — = 4], The functional
Jn =J (6p) is minimized by the method of quickest descent
in the space

F=C"'{G) x C(I) x CYI}).

We note some special featuraes of this procedure. Suppose
that {¢', Al, u'} is the first approximation of the extremal

In. Variation of I, relative to the function u at the point
N —i \\ {ct, AL, u'} is written in the standard way, by defining the
© °— gradient of the functional Jy, in the space C*:! (G):
Yo o g 2 5 # u

I n

87, =2 { [ zpudc +25, O 2 — 2 (p)] arew,
Fig. 2. Function A(u) for different values i ar
G

of e: 1-3) same as in Fig. 1.
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Descent in the direction of the gradient éu for fixed functions ¢! (u) and X (u) is accomplished by a stepped
change of the scalar parameter h. As concerns the minimization of I, in the space C (—II) x ¢t (-I:) with the
fixed function u!, this procedure coincides in accuracy with that described above for the case of pure mate-
rials. The difference consists in that the role of v is played here by u' and the minimum, generally speak-
ing, will not be zero (it will tend to zero when n — ),

3. Ervors in the Specification of the Temperature Fields. Let us consider the following specific

problem, namely, that it is necessary to find the thermal conductivity of 2 materigl A{u) for a specified
temperature field

u(g 1) =v+8 (1 +ev), (& 1O, 1) X (O, 1. (11)

The specific heat ¢ is assumed to be constant (¢ = 1). The problem has an obvious solution in the class of
pure materials when ¢ =0: A = 0.5. In the sense of the definitions introduced above, this means that the
temperature field u (¢, 7) when € = 0 helongs to a form k(M) of the set M:

a(E, T, 8)lems = K[(1; 0.5)].

By the method of reduction to the system of linear equations (8), the function A(u) has been found in the
form of a cubic spline for certain values of the parameter ¢ in the neighborhood of zero. Simultaneously,
the value of the functionals of the mean-square and homogeneous convergence has been calculated:
8, = max|Pul, 6, = (V‘,ﬁjipziu} dG)l."Z
(&, nel

The results of the numerical solution are shown in Figs. 1 and 2. In addition to the parameter g,
the number of points Ny X N, was also varied in the square (0.1) x (0.1), in which the specified field u (¢,
) is assumed to be. The calculations were carried out for three values of Ng X Ny: Ng x Np =6 x 10,
21 x 21 and 51 x 21. All the derivatives of u(¢, 7), participating in P [u], were calculated exactly by dif-
ferentiations of Eq. (11). The integrals Hi. K, occurring in the coefficients of system (8), were replaced
by integral sums of the type: P

COHE PR (1) B M T AG (. 1),
G Tn) €Gp 4AG (M, 1) = Eppar — SN (Tass — Taa)- (12)
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Figure 1 shows the functions 6, (¢) and 3, (¢) for different numbers of Ng X Ny. The solutions of A(u) for &
=+ 0.1 and + 0.15 and three values of Ny X N are plotted in the form of graphs in Fig. 2. The nonvan-
ishing of the functional §; (¢) and 8, (¢) shows that when ¢ = 0, the temperature field u(¢, 1) cannot be ob-
served in pure materials with ¢ = const (this limitation is important). The behavior of A(u, €) in terms of
the integral sums (12) is found to be a strong function of the number of points at which the field u(¢, 7) is
specified and its derivatives. This example shows that extrapoiation of the thermophysical properties in a
class of pure materials [minimization of the functional (6)], even with small perturbations of the field v(¢,
T), is very indeterminate. Bearing in mind that the experimental measurements always are characterized
by some or other errors and the derivatives du/dr, du/d¢ and d?u/dt? can be obtained only by numerical
differentiation, introducing additional errors in the specification of the starting data for solving the reverse
problem, the conclusion can be drawn that the application of the method of the solutions to a class of pure
materials. [minimization of the functional (6)] in practical problems must reveal considerable difficulties.
On the other hand, if the field v(¢, 7 €K (M), then minimization of Eq. (9) with the condition (10) leads to
the solution (¢, A), providing a zero value to both functionals, i.e., the solution to a class of pure mate-
rials.

NOTATION

¢, space coordinate; 7, time coordinate; u(f, 7), temperature at the point (£, 1); ¢, specific heat;
A, thermal conductivity as a function of temperature; C (fﬂ, space of the continuous functions on I;; Ci(ﬂ),
space of the continuous functions on f1, together with the first derivative; C%1(G), space of functions u (¢,
7), continuous on G, together with second order derivatives in ¢ and first order derivatives in 7; €, scalar
parameter, defining the measure of perturbation of the exact solution of u(¢, 7)€ K(M).

LITERATURE CITED

1. O. A, Ladyzhenskaya, V. A, Solonnikov and N, N. Ural'tseva, Linear and Quasilinear Equations of
Parabolic Type [in Russian], Nauka, Moscow (1967). '

2. V. V. Frolov, The Uniqueness of the Solution of the Problem of Identification of Thermoconducting
Media, Dokl. Akad. Nauk Belorussian SSR, 17, No, 1 (1973),

3. J. Alberg, E. Nilson and J. Walsh, Theory of Splines and Its Application [in Russian], Mir, Moscow
(1972).

4. A. Fiakko and G. MacCormick, Nonlinear Programming. Methods of Successive Unconditional
Minimization [in Russian], Mir, Moscow (1972).

1286



